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Many-body physics 
with cold atoms

Quantum optics control

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

Vortices
(1999)

many-body 
system Temperature T,

particle number N

Common theme:

• closed system (isolated from 
environment)

• stationary states in thermodynamic 
equilibrium

Fermion superfluid
(2003)

Motivation

➡ thermalization/equilibration (PennState, Berkeley, 
Chicago, ...)

➡ sweep and quench many-body dynamics (Munich, 
Vienna)

➡ metastable excited many-body states (Innsbruck, 
MIT, ...)

➡ ...



many-body 
system Temperature T,

particle number N

Common theme:

• closed system (isolated from 
environment)

• stationary states in thermodynamic 
equilibrium

Quantum optics control

Motivation

Novel Situation: Cold atoms as open many-body systems

drive
(e.g. laser)

➡ drive/dissipation as dominant 
resource of many-body dynamics!

• use manipulation tools of 
quantum optics

dissipative environment

many-body 
system

Many-body physics 
with cold atoms

Bose-Einstein Condensate
(1995)

Mott Insulator
(2002)

Vortices
(1999)

Fermion superfluid
(2003)

• natural occurrences 
of dissipation  

➡ no immediate condensed 
matter counterpart



Key Questions:

• Is topological order an exclusive feature of Hamiltonian ground states, or pure states?

• Which topological states be reached by a targeted, dissipative cooling process?           

• What are proper microscopic, experimentally realizable models?

• What are the parallels and differences to the equilibrium (ground state) scenario?

related: Kitagawa, Berg, Rudner, Demler, PRB (2010); Lindner, Refael, Galitski, Nature Phys. (2011).
Kapit, Hafezi, Simon, PRX (2014).

Motivation: Topology by Dissipation

Hilbert space

dark state

Basic Setting: Thinning out a density matrix to a pure state (“cooling”)

⇢
t!1�! |DihD|

mixed pure

bosonic systems spin systems fermion systems
SD et al. Nat. Phys. (2008)

F. Verstraete et al. Nat. Phys. (2009)
Krauter et al. PRL (20010)

Barreiro et al. Nature (2011)
SD et al. PRL (2010)

SD et al. Nat. Phys. (2011)



Outline

Order by dissipation

Topology by dissipation
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FIG. 2. Two examples of Chern number ⌫ = 0: gap-only situation ũk = 1 and a small gap added to a nontrivial operator
for ⌫ = �1 (ũk = 0.2 + 1

2 (D
�
1 + D�

2 ); cf. Fig. ??). In both cases, the winding numbers around given Fermi surfaces are
nonzero (because the complex phase of the order parameter cannot be gauged away by a nonsingular redefinition of the fermion
operators), but they compensate each other. Obviously, such compensation is only possible for an even number of Fermi
surfaces.

Thus the Hamiltonian (as well as the vector ~n itself) constructed from our spinor is the right object to consider
also in our dissipative context. It is given by
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This form allows us to interpret the ingredients in more conventional terms. The normalization N
k

plays the role of
the eigenvalues of the Hamiltonian;
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The energy is gapped (N
k

> 0 for all k) for nonzero r
0

. For r
0

= 0, there is one gapless point in the spectrum. To find
it, we must seek the simultaneous zeroes of |ũ

k

|2, |ṽ
k

|2. The four distinct zeroes of |ṽ
k

|2 are at (0, 0); (0,⇡); (⇡, 0); (⇡,⇡)
where we have of course the identification of ⇡ and �⇡. In contrast, due to the half-periodicity of the D�

↵

and for
r
1,2

> 0, |ũ
k

|2 can only have a single zero at one of the above locations in the Brillouin zone. A specific choice for
�,�0 will thus single out one of the potentially gapless points k⇤ = {(0, 0); (0,⇡); (⇡, 0); (⇡,⇡)}. In the vicinity of these
points, the spectrum behaves quadratically ⇠ �k2, where �k is the deviation from the gapless point; this behavior is
determined by ṽ

k

.
Based on our numerical experience, the existence of a gapless point appears to be a necessary condition for topo-

logically nontrivial order (but not a su�cient one). This is in contrast to topological equilibrium superconductors,
which can be fully gapped. We discuss this point below further.
Furthermore, we note the identifications
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The zeroes of ⇠
k

have a particular significance as is clear from the representation (??) of the Chern number, as
they define the ”Fermi surfaces”, where ⇠

k

changes sign. While one typically thinks of a positive chemical potential
providing for such a surface, the characteristic feature of a zero crossing of ⇠

k

can – and does – also occur in our
nonequilibrium setting upon appropriate choice of the Lindblad operators.
As an important technical point for the visualization of the Chern number, we note the following relation:
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which holds only on a Fermi surface, since there the component n
3,k

= 0 and thus r
k

= 1 for the modulus of the order
parameter.

One Dimension Two Dimensions

SD, E. Rico, M. A. Baranov, P. Zoller, Nat. 
Phys. (2011)

C. Bardyn, E. Rico, M. Baranov, A. Imamoglu, P. Zoller, SD, PRL (2012); 
New J. Phys. (2013);

J. C. Budich, P. Zoller, SD, PRA (2015)

Dissipative Chern insulators

http://xxx.lanl.gov/find/quant-ph/1/au:+Diehl_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Diehl_S/0/1/0/all/0/1
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http://xxx.lanl.gov/find/quant-ph/1/au:+Zoller_P/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Zoller_P/0/1/0/all/0/1


 -- Liouvillian operator

dissipative evolution

Lindblad operators

coherent evolution

• Many-body master equations

( )
bathsystem

➡ extend notion of Hamiltonian engineering to dissipative sector
➡ microscopically well controlled non-equilibrium many-body quantum systems
➡ here: focus on H = 0

Many-Body Physics with Dissipation: Description

• Important concept: Dark states 

) L[|DihD|] = 0

⇢ = |DihD|➡ time evolution stops when                        

@t⇢ = �i[H, ⇢] + 
X

i

Li⇢L
†
i � 1

2{L
†
iLi, ⇢}

Li|Di = 0 8i



 -- Liouvillian operator

Lindblad operators

( )
bathsystem

Many-Body Physics with Dissipation: Description

• Interesting situation: unique dark state solution

➡ dissipation increases purity (entropy pump)

Hilbert space

dark subspace

➡ directed motion in Hilbert space ⇢
t!1�! |DihD|

B. Kraus, SD et al. PRA 08

• Many-Body master equations

• dark subspace one-dimensional

• no other stationary solutions

@t⇢ = �i[H, ⇢] + 
X

i

Li⇢L
†
i � 1

2{L
†
iLi, ⇢}



Paired Fermionic Dark States: Mechanism 

• Antiferromagnetic Neel state (half filling)

Antiferromagnet

d-wave SC

➡ Lindblad operators:

0

flip!

flip!

SD, W. Yi, A. Daley, P. Zoller, PRL 105 (2010)

➡  magnetic dark state based on Fermi statistics

• proximity of magnetic and superconducting order in fermion ground states

`+i� = c†i�1,"ci,#

• Superconducting state: delocalized Neel order

|BCS1i = (d†)N |vaci, d† =
X

i

(c†i+1," + c†i�1,")c
†
i,#

➡ Lindblad operators:

➡ Combine fermionic Pauli blocking with phase locking

➡  sc dark state based on additional phase locking

L+
i = `+i,+ + `+i,� = (c†i+1," + c†i�1,")ci,#

http://xxx.lanl.gov/find/quant-ph/1/au:+Diehl_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Diehl_S/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Zoller_P/0/1/0/all/0/1
http://xxx.lanl.gov/find/quant-ph/1/au:+Zoller_P/0/1/0/all/0/1
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Note that these operators can be obtained from Ŝa
i,⇥ by

a particle-hole transformation c†i,⇤ ⇥ ci,⇤ on the central
site i. For the action of the operators jai,⇥ the assump-
tion of fermionic statistics is essential, as illustrated in
Fig. 1b: they generate spin flipping transport according
to e.g. j+i,⇥ = c†i+e� ,�ci,⇥, which is not possible when the
antiferromagnetic order is already present. The proof of
uniqueness of the Néel steady state up to double degen-
eracy is then trivial: The steady state must fulfill the
quasilocal condition that for any site occupied by a cer-
tain spin, its neighboring sites must be filled by opposite
spins. For half filling, the only states with this property
are |N±⇤. This residual twofold degeneracy can be lifted
by adding a single operator ji = c†i+e�

(1 + ⌅z)ci on an
arbitrary site i.

To find the Lindblad operators for the d-wave BCS
state, we apply a similar strategy. We first rewrite the
d-wave generator using the operators Ŝa

i ,

d† = i
2

⇥

i

(c†i+ex
� c†i+ey

)⌅yc†i =
a
2

⇥

i

D̂a
i , (4)

D̂a
i =

⇥

⇥

⇤⇥ Ŝ
a
i,⇥ ,

where ⇤±x = 1, ⇤±y = �1, and the quasilocal d-wave

pair D̂a
i may be seen as the ”d-wave unit cell operators”.

Note the freedom of choosing a = ± in writing the state.
This form makes the physical picture of a d-wave super-
fluid as delocalized antiferromagnetic order away from
half filling [3, 14] particularly apparent. The condition
[J�

i ,
�

j D̂
b
j ] = 0 (� = (a, z)) is fulfilled by

Ja
i =

⇥

⇥

⇤⇥j
a
i,⇥ , Jz

i =
⇥

⇥

⇤⇥j
z
i,⇥ ,

with jzi,⇥ = c†i+e�
⌅zci, establishing Eq. (1). Similar to

above, each Ja
i is obtained from D̂a

i by a particle-hole
transformation on the central site i. In fact, for these
operators the stronger quasi-local commutation proper-
ties with the molecular d-wave pairs holds due to Eq.
(3): [Ja

i , D̂
a
j ] = 0 for all i, j, [Ja

i , D̂
b
j ] = 0 for all i, j in the

same sublattice, which relies again on fermionic statis-
tics. In contrast, the operators Jz

i only commute with the
symmetric superposition of all d-wave pairs D̂a

j . These
operators establish coherence via phase locking between
adjacent cloverleaves of sites.

The question of uniqueness of the Lindblad opera-
tors (1) is equivalent to the uniqueness of the ground
state of the associated hermitian Hamiltonian H =
U
�

i,�=±,z J
�†
i J�

i for U > 0. We note that our BCS
state shares the symmetries of the Hamiltonian of global
phase and spin rotations, and translation invariance. As-
suming that no other symmetries exist, we expect the
ground state to be unique. Note, however, the necessity
of the full set {J�

i }: Omitting e.g. {Jz
i } gives rise to an

additional discrete symmetry in H resulting in ground
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FIG. 2. Numerical illustration of the uniqueness of the steady
state. (a) Evolution of entropy computed from the full system
density matrix under the master equation with Lindblad op-
erators from Eq. (1), for four atoms on a 4x1 lattice, showing
exponential convergence from a completely mixed state to a
pure state. (b) Same as in (a), but showing fidelity to the
d-wave BCS state with 4 atoms on a 4⇥3 grid in 2D, com-
puted via a quantum trajectories method (see text). Dashed
lines show sampling error, and insets show convergence on a
logarithmic scale.

state degeneracy. These results are confirmed with nu-
merical diagonalizations for small system sizes and pe-
riodic boundary conditions, and from master equation
simulations where |BCSN ⇤ is established as the unique
pure steady state for arbitray mixed state initial condi-
tions, cf. Fig. 2 .
The above construction method may be used to find

the set of parent Lindblad operators for a much wider
class of states. To illustrate this, we switch to one di-
mension for simplicity. There, any pairing state of the
form

|µ, n, k;N⇤ = O†N
k,n,µ|vac⇤,

where O†
k,n,µ =

�
i exp ikxi c

†
i+n⇧

µc†i and ⇧µ = (1,⌅�)
and the quantum numbers are spin combination µ =
0, ..., 3, the ”pairing distance” n = (1, ...,M �1), and the
pairing momentum k = (�(M�1)/2, ..., (M�1)/2)2⇥/M
(the one dimensional analog of the d-wave state is homo-
geneous nearest neighbour singlet pairing O†

0,1,2). Note
that the construction is not applicable for the seemingly
simplest onsite pairing states O†

k,0,2; the analogs of Eq.
(1) become local, such that the lattice sites decouple and
no phase coherence can be built up.
Physical Implementation – The simplicity of the form

of J�
i raises the possibility to realise dissipative pairing

via reservoir engineering with cold atoms, as we will il-
lustrate here by making use of metastable states in al-
kaline earth-like atoms [15, 16]. Fermionic isotopes have
non-zero nuclear spin (e.g., I = 1/2 for 171Yb, which we
will choose here), which acts as an independent degree
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FIG. 2. Numerical illustration of the uniqueness of the steady
state. (a) Evolution of entropy computed from the full system
density matrix under the master equation with Lindblad op-
erators from Eq. (1), for four atoms on a 4x1 lattice, showing
exponential convergence from a completely mixed state to a
pure state. (b) Same as in (a), but showing fidelity to the
d-wave BCS state with 4 atoms on a 4⇥3 grid in 2D, com-
puted via a quantum trajectories method (see text). Dashed
lines show sampling error, and insets show convergence on a
logarithmic scale.

state degeneracy. These results are confirmed with nu-
merical diagonalizations for small system sizes and pe-
riodic boundary conditions, and from master equation
simulations where |BCSN ⇤ is established as the unique
pure steady state for arbitray mixed state initial condi-
tions, cf. Fig. 2 .
The above construction method may be used to find

the set of parent Lindblad operators for a much wider
class of states. To illustrate this, we switch to one di-
mension for simplicity. There, any pairing state of the
form

|µ, n, k;N⇤ = O†N
k,n,µ|vac⇤,

where O†
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0, ..., 3, the ”pairing distance” n = (1, ...,M �1), and the
pairing momentum k = (�(M�1)/2, ..., (M�1)/2)2⇥/M
(the one dimensional analog of the d-wave state is homo-
geneous nearest neighbour singlet pairing O†

0,1,2). Note
that the construction is not applicable for the seemingly
simplest onsite pairing states O†

k,0,2; the analogs of Eq.
(1) become local, such that the lattice sites decouple and
no phase coherence can be built up.
Physical Implementation – The simplicity of the form

of J�
i raises the possibility to realise dissipative pairing

via reservoir engineering with cold atoms, as we will il-
lustrate here by making use of metastable states in al-
kaline earth-like atoms [15, 16]. Fermionic isotopes have
non-zero nuclear spin (e.g., I = 1/2 for 171Yb, which we
will choose here), which acts as an independent degree

• The full set of Lindblad operators is found from

ci =

✓
c",i
c#,i

◆Pauli matrices

|D(N)i ⇠ G†N |vaci

• given by

Dissipative Pairing: Set of Lindblad Operators 

entropy

➡ Projective pair condensation mechanism, does not rely on attractive conservative forces

[L↵
i , G

†] = 0 8i,↵

L↵
i = (c†i+1 + c†i�1)�

↵ci

entropy pump unique dark state



damping rates

,
|BCS,Ni = G†N |vaci

• fixed number Lindblad operators

• resulting dark state 

C†
i =

X

j

vi�ja
†
j

translation invariant creation and annihilation part

Ai =
X

j

ui�jaj

C†
k = vka

†
k

Ak = ukak

• requirements

'k =
vk
uk

= �'�k

antisymmetry

G† =
X

k

'kc
†
�kc

†
k

Fixed Number vs. Fixed Phase Lindblad Operators
• spinless fermions for simplicity

�N ⇠ 1/
p
N

Li = C†
iAi

• fixed phase Lindblad operators

• resulting dark state (with                     )               

|BCS, ✓i = exp(rei✓G†
)|vaci

`i = C†
i + rei✓Ai

• comment: construct exactly solvable interacting Hubbard models with parent Hamiltonian 
exact number conserving  Majorana wavefunction: Iemini, Mazza, Rossini, SD, Fazio, arxiv (2015)

H =
X

i

L†
iLi Li|Di = 08i



• use exact knowledge of stationary state: linearized long time evolution

• use equivalence of fixed number and fixed phase states in thdyn limit

-> Dirac algebra

fixed spontaneously

fixed by average particle 
number

• properties

• relation to microscopic operators

t ! 1
“low energy limit”

Spontaneous Symmetry Breaking and Dissipative Gap

L[⇢] = 
X

i

[`i⇢`
†
i � 1

2{`
†
i `i, ⇢}] =

X

q

q[`q⇢`
†
q � 1

2{`
†
q`q, ⇢}]

Li = C†
iAi `i = C†

i + rei✓Ai

➡ Scale generated in long time evolution ; exponentially fast approach of steady state
➡ Robustness of prepared state against perturbations

-3 -2 -1 0 1 2 3
0.0

0.5

1.0

1.5

2.0

damping rate

bosons

fermions

q

q

q = 0

Z

BZ

d2k
(2⇡)2

|ukvk|2
|uk|2+|↵vk|2 (|u

2
q|+ |v2q|) � 0n

• dissipative gap in the damping rate

• effective fermionic quasiparticle operators

; fulfill Dirac algebra -> uniqueness`q|BCS, ✓i = 0



Topology by Dissipation: 
Dissipative Kitaev Wire

SD, E. Rico, M. A. Baranov, P. Zoller, Nat. Phys. 7, 971 (2011)
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Kitaev‘s quantum wire (Hamiltonian scenario)

• two inequivalent 
representatives

physical site

• Hamiltonian in Bogoliubov basis

bulk

 - p-wave superfluid in ground state

- non-local Bogoliubov fermion

- unpaired zero energy Majorana edge 
modes, or

quasilocal!

• spinless superconducting fermions on a lattice

H ⇠
X

(ã†i ãi � 1
2 )

ãi =
1
2 (ai+1 + a†i+1 � ai + a†i )ãi = ai

ãi|Gi = 08 i

trivial phase nontrivial phase

 - gapped spectrum

edge

Kitaev (2001)



fermion reservoir

=> dark state 
unique

bulk driven to pure steady state: 
Kitaev’s ground state 

dark state = topological p-wave

ãi |p⇥wave�= 0 (i = 1, . . . , N ⇥1)

Hilbert space

dark state

• master equation

Ω̇ = ∑
N�1X

i=1

µ
ãiΩã†

i �
1
2

ã†
i ãiΩ�Ω

1
2

ã†
i ãi

∂

{ãi, ãj} = 0 {ã†i , ãj} = �ij

Dissipative Majorana Quantum Wire

quantum jump operators
~ Kitaev’s Bogoliubov operators

(quasilocal)

ãi =
1
2 (ai+1 + a†i+1 � ai + a†i )

Li = ãi

• Kitaev’s Bogoliubov operators as Lindblad operators quasilocal



bulk driven to pure steady state: 
Kitaev’s ground state 

|0�, |1�= ã†
N |0�

Majorana edge modes decoupled from 
dissipation

non-local decoherence free subspacedark state = topological p-wave

dissipative
Majorana edge 

modes

ãi |p⇥wave�= 0 (i = 1, . . . , N ⇥1)

Dissipative Majorana Quantum Wire

fermion reservoir

• master equation

Ω̇ = ∑
N�1X

i=1

µ
ãiΩã†

i �
1
2

ã†
i ãiΩ�Ω

1
2

ã†
i ãi

∂

ãi =
1
2 (ai+1 + a†i+1 � ai + a†i )

Li = ãi

• Kitaev’s Bogoliubov operators as Lindblad operators quasilocal



Edge - Bulk:

non-local decoherence free subspace

Dissipative Majorana Quantum Wire dissipative
Majorana edge 

modes

Ω̇edge = 0
°
Ωedge

¢
ÆØ

⇤ �Æ|Ωedge|Ø⇥ |Æ⇥ � {|0⇥, |1⇥}Ωbulk(�) = |p⌅wave⇤⇥p⌅wave|

bulk cooled to pure steady state: 
Kitaev’s ground state 

|0�, |1�= ã†
N |0�

Majorana edge modes decoupled from 
dissipation

dark state = topological p-wave

ãi |p⇥wave�= 0 (i = 1, . . . , N ⇥1)

- dynamically isolated from each other

- edge mode subspace protected by dissipative gap

⇢bulk-edge . e��gapt⇢bulk-edge(0) ! 0

) t ! 1 : ⇢ ! ⇢edge ⌦ ⇢bulk
➡ parallels Hamiltonian case

✓ robustness against 
disorder/ mixed states

✓ non-abelian exchange 
statistics

✓ topological invariant



Implementation with Fermionic Atoms

long times 

by immersion of 
driven system into 
BEC reservoir

   Rabi frequency
b

1 2

a1 a2
�laser = 2�lattice

auxiliary system

system of interest

(i) Drive: coherent coupling to auxiliary system with double wavelength Raman laser

Ji = (a†i + a†i+1)(ai � ai+1)

driving laser

+� �⌦

• We propose microscopically 



Implementation with Fermionic Atoms

long times 

by immersion of 
driven system into 
BEC reservoir

(ii) Dissipation: phonon emission into superfluid reservoir

Ji = (a†i + a†i+1)(ai � ai+1)

reservoir 

driving laser
superfluid 
reservoir b

1 2

a1 a2

auxiliary system

system of interest

+� �⌦

• We propose microscopically  



Implementation with Fermionic Atoms

• Connection to quadratic theory: we obtain

Ji = (a†i + a†i+1)(ai � ai+1) ji = (a†i + a†i+1 + ai � ai+1) / ãi
“low energies”=̂

long times 
fixed number fixed phase

Kitaev’s Majorana operators

/ ãi

by immersion of 
driven system into 
BEC reservoir

Ji = (a†i + a†i+1)(ai � ai+1)

+� �⌦

dissipative gap 
emerges naturally

• We propose microscopically 



Topology by Dissipation: 
Dissipative Chern Insulators

��4 +4

1

⌫

J. C. Budich, P. Zoller, SD, PRA (2015)
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FIG. 2. Two examples of Chern number ⌫ = 0: gap-only situation ũk = 1 and a small gap added to a nontrivial operator
for ⌫ = �1 (ũk = 0.2 + 1

2 (D
�
1 + D�

2 ); cf. Fig. ??). In both cases, the winding numbers around given Fermi surfaces are
nonzero (because the complex phase of the order parameter cannot be gauged away by a nonsingular redefinition of the fermion
operators), but they compensate each other. Obviously, such compensation is only possible for an even number of Fermi
surfaces.

Thus the Hamiltonian (as well as the vector ~n itself) constructed from our spinor is the right object to consider
also in our dissipative context. It is given by

H
k

= N
k

✓ |u
k

|2 � |v
k

|2 u⇤
k

v
k

u
k

v⇤
k

�(|u
k

|2 � |v
k

|2)
◆

=

✓
⇠
k

�
k

�⇤
k

�⇠�k

◆
(38)

This form allows us to interpret the ingredients in more conventional terms. The normalization N
k

plays the role of
the eigenvalues of the Hamiltonian;

N
k

= |ũ
k

|2 + |ṽ
k

|2 = |pr
1

d�
1

+
p
r
2

ei(✓+⇡)/2d�
0

2

|2|pr
1

d�
1

�p
r
2

ei(✓+⇡)/2d�
0

2

|2 + sin k2
1

+ sin k2
2

(39)

The energy is gapped (N
k

> 0 for all k) for nonzero r
0

. For r
0

= 0, there is one gapless point in the spectrum. To find
it, we must seek the simultaneous zeroes of |ũ

k

|2, |ṽ
k

|2. The four distinct zeroes of |ṽ
k

|2 are at (0, 0); (0,⇡); (⇡, 0); (⇡,⇡)
where we have of course the identification of ⇡ and �⇡. In contrast, due to the half-periodicity of the D�

↵

and for
r
1,2

> 0, |ũ
k

|2 can only have a single zero at one of the above locations in the Brillouin zone. A specific choice for
�,�0 will thus single out one of the potentially gapless points k⇤ = {(0, 0); (0,⇡); (⇡, 0); (⇡,⇡)}. In the vicinity of these
points, the spectrum behaves quadratically ⇠ �k2, where �k is the deviation from the gapless point; this behavior is
determined by ṽ

k

.
Based on our numerical experience, the existence of a gapless point appears to be a necessary condition for topo-

logically nontrivial order (but not a su�cient one). This is in contrast to topological equilibrium superconductors,
which can be fully gapped. We discuss this point below further.

Furthermore, we note the identifications

⇠
k

= |ũ
k

|2 � |ṽ
k

|2, �
k

= ũ⇤
k

ṽ
k

(40)

The zeroes of ⇠
k

have a particular significance as is clear from the representation (??) of the Chern number, as
they define the ”Fermi surfaces”, where ⇠

k

changes sign. While one typically thinks of a positive chemical potential
providing for such a surface, the characteristic feature of a zero crossing of ⇠

k

can – and does – also occur in our
nonequilibrium setting upon appropriate choice of the Lindblad operators.

As an important technical point for the visualization of the Chern number, we note the following relation:

for k 2 F
�

: r
k

✓
k

= n
2,k

r
k

n
1,k

� n
1,k

r
k

n
2,k

(41)

which holds only on a Fermi surface, since there the component n
3,k

= 0 and thus r
k

= 1 for the modulus of the order
parameter.



Dissipative Chern Insulators (BdG Superfluids/-conductors)

• fundamental caveat: 

Hparent =
X

i

L†
iLi

• recipe for pure dissipative topological states (so far)

• Bogoliubov eigenoperators as Lindblad operators 

Li =
X

j

uj�iaj + vj�ia
†
j

• quasi-locality of Wannier functions key requirement for physical realization 

Li|Gi = 08i

• Q: How general is the concept of “Topology by Dissipation”?

• spanned by the set of Lindblad operators 

• no exponentially localized Wannier functions exist for states with non-vanishing Chern number

➡ topology interferes with natural locality of the Lindblad operators

• Hamiltonian ground state as dissipative dark state |Di = |Gi

D. J. Thouless, J. Phys. C (1984); • Landau levels: Wannier functions decay ⇠ r�2

• general band structures C. Brouder et al. PRL (2007)



Model 

s-wave symmetric creation part

• Lindblad operators generating dissipative dynamics:

C†
i = � a†i + (a†i1 + a†i2 + a†i3 + a†i4)

• starting point: interacting Liouvillian with Li = C†
iAi & long time linearization

Ai = (ai1 + iai2 � ai3 � iai4)

= r
i,x

a
i

+ ir
i,y

a
i

p-wave symmetric annihilation part

Li = C†
i +Ai

local circulation

+i

�i

�1 +1 i1

i2

i3

i4

i

• Strategy: combine 

• critical (topological) quasi-local Lindblad operators 

• non-topological Lindblad stabilizing critical point 

• e.g. half filling

• creation part

• annihilation part



• Chern number vanishes except for special points

Observations

• special points are critical: closing of damping gap

C =
1

4⇡

Z
d2k ~nk(@k1~nk ⇥ @k2~nk)

• standard 2D diagnostics via first Chern number 

• pure stationary state: {Li, Lj} = 0, {Li, L
†
j} 6= 0 8i, j

��4 +4

1

C

➡ but: Lindblad operators local, how can C be nonzero?

•         characterizes the pure Gaussian state
 

h[a†k, ak]i h[a†k, a
†
�k]i

h[a�k, ak]i h[a�k, a
†
�k]i

!
= ~nk~�

|~nk| = 1

~nk

pure state



Physics at the dissipative critical point

• momentum space Lindblad operators +i

�i

�1 +1 i1

i2

i3

i

��4 +4

1

Lk = ũkak + ṽka
†
�k

Bk =

✓
ũk

ṽk

◆
=

✓
2i (sin(k

x

) + i sin(k
y

))

� + 2(cos(k
x

) + cos(k
y

))

◆

C

Lk⇤ = 0

• critical point                : there is one point                where� = �4 k⇤ = 0

• overcompleteness of quasi-local (pseudo) Bloch/Wannier functions necessary to 
obtain nonzero Chern number

E. Rashba, L. Zhukov, A. Efros, PRB (1997)

• implies damping gap closing: k⇤ = {L†
k⇤
, Lk⇤} = 0

➡ quasilocal Lindblad operators can support critical Chern states only
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FIG. 2. Two examples of Chern number ⌫ = 0: gap-only situation ũk = 1 and a small gap added to a nontrivial operator
for ⌫ = �1 (ũk = 0.2 + 1

2 (D
�
1 + D�

2 ); cf. Fig. ??). In both cases, the winding numbers around given Fermi surfaces are
nonzero (because the complex phase of the order parameter cannot be gauged away by a nonsingular redefinition of the fermion
operators), but they compensate each other. Obviously, such compensation is only possible for an even number of Fermi
surfaces.

Thus the Hamiltonian (as well as the vector ~n itself) constructed from our spinor is the right object to consider
also in our dissipative context. It is given by

H
k

= N
k

✓ |u
k

|2 � |v
k

|2 u⇤
k

v
k

u
k

v⇤
k

�(|u
k

|2 � |v
k

|2)
◆

=

✓
⇠
k

�
k

�⇤
k

�⇠�k

◆
(38)

This form allows us to interpret the ingredients in more conventional terms. The normalization N
k

plays the role of
the eigenvalues of the Hamiltonian;

N
k

= |ũ
k

|2 + |ṽ
k

|2 = |pr
1

d�
1

+
p
r
2

ei(✓+⇡)/2d�
0

2

|2|pr
1

d�
1

�p
r
2

ei(✓+⇡)/2d�
0

2

|2 + sin k2
1

+ sin k2
2

(39)

The energy is gapped (N
k

> 0 for all k) for nonzero r
0

. For r
0

= 0, there is one gapless point in the spectrum. To find
it, we must seek the simultaneous zeroes of |ũ

k

|2, |ṽ
k

|2. The four distinct zeroes of |ṽ
k

|2 are at (0, 0); (0,⇡); (⇡, 0); (⇡,⇡)
where we have of course the identification of ⇡ and �⇡. In contrast, due to the half-periodicity of the D�

↵

and for
r
1,2

> 0, |ũ
k

|2 can only have a single zero at one of the above locations in the Brillouin zone. A specific choice for
�,�0 will thus single out one of the potentially gapless points k⇤ = {(0, 0); (0,⇡); (⇡, 0); (⇡,⇡)}. In the vicinity of these
points, the spectrum behaves quadratically ⇠ �k2, where �k is the deviation from the gapless point; this behavior is
determined by ṽ

k

.
Based on our numerical experience, the existence of a gapless point appears to be a necessary condition for topo-

logically nontrivial order (but not a su�cient one). This is in contrast to topological equilibrium superconductors,
which can be fully gapped. We discuss this point below further.
Furthermore, we note the identifications

⇠
k

= |ũ
k

|2 � |ṽ
k

|2, �
k

= ũ⇤
k

ṽ
k

(40)

The zeroes of ⇠
k

have a particular significance as is clear from the representation (??) of the Chern number, as
they define the ”Fermi surfaces”, where ⇠

k

changes sign. While one typically thinks of a positive chemical potential
providing for such a surface, the characteristic feature of a zero crossing of ⇠

k

can – and does – also occur in our
nonequilibrium setting upon appropriate choice of the Lindblad operators.
As an important technical point for the visualization of the Chern number, we note the following relation:

for k 2 F
�

: r
k

✓
k

= n
2,k

r
k

n
1,k

� n
1,k

r
k

n
2,k

(41)

which holds only on a Fermi surface, since there the component n
3,k

= 0 and thus r
k

= 1 for the modulus of the order
parameter.

• Chern number decomposition: sum of winding numbers around TRI points    within “electron 
region”     , where

Stabilization of the critical point

~̂nk =
~nk

|~nk|

non-critical
n3,k < 0

vector field:

height function:

fermion occ.

C = 0

⌫� =
1

2⇡

I

F�

rk✓k · dk

✓
n1,k

n2,k

◆
= rk

✓
sin ✓k
cos ✓k

◆

E n̂3,k > 0
�

n̂3,k = 1� 2n(k)

E
n̂3,k > 0

C =
1

4⇡

Z
d2k ~̂nk(@k1~̂nk ⇥ @k2~̂nk) =

X

�2E
⌫�
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FIG. 2. Two examples of Chern number ⌫ = 0: gap-only situation ũk = 1 and a small gap added to a nontrivial operator
for ⌫ = �1 (ũk = 0.2 + 1

2 (D
�
1 + D�

2 ); cf. Fig. ??). In both cases, the winding numbers around given Fermi surfaces are
nonzero (because the complex phase of the order parameter cannot be gauged away by a nonsingular redefinition of the fermion
operators), but they compensate each other. Obviously, such compensation is only possible for an even number of Fermi
surfaces.

Thus the Hamiltonian (as well as the vector ~n itself) constructed from our spinor is the right object to consider
also in our dissipative context. It is given by

H
k

= N
k

✓ |u
k

|2 � |v
k

|2 u⇤
k

v
k

u
k

v⇤
k

�(|u
k

|2 � |v
k

|2)
◆

=

✓
⇠
k

�
k

�⇤
k

�⇠�k

◆
(38)

This form allows us to interpret the ingredients in more conventional terms. The normalization N
k

plays the role of
the eigenvalues of the Hamiltonian;

N
k

= |ũ
k

|2 + |ṽ
k

|2 = |pr
1

d�
1

+
p
r
2

ei(✓+⇡)/2d�
0

2

|2|pr
1

d�
1

�p
r
2

ei(✓+⇡)/2d�
0

2

|2 + sin k2
1

+ sin k2
2

(39)

The energy is gapped (N
k

> 0 for all k) for nonzero r
0

. For r
0

= 0, there is one gapless point in the spectrum. To find
it, we must seek the simultaneous zeroes of |ũ

k

|2, |ṽ
k

|2. The four distinct zeroes of |ṽ
k

|2 are at (0, 0); (0,⇡); (⇡, 0); (⇡,⇡)
where we have of course the identification of ⇡ and �⇡. In contrast, due to the half-periodicity of the D�

↵

and for
r
1,2

> 0, |ũ
k

|2 can only have a single zero at one of the above locations in the Brillouin zone. A specific choice for
�,�0 will thus single out one of the potentially gapless points k⇤ = {(0, 0); (0,⇡); (⇡, 0); (⇡,⇡)}. In the vicinity of these
points, the spectrum behaves quadratically ⇠ �k2, where �k is the deviation from the gapless point; this behavior is
determined by ṽ

k

.
Based on our numerical experience, the existence of a gapless point appears to be a necessary condition for topo-

logically nontrivial order (but not a su�cient one). This is in contrast to topological equilibrium superconductors,
which can be fully gapped. We discuss this point below further.

Furthermore, we note the identifications

⇠
k

= |ũ
k

|2 � |ṽ
k

|2, �
k

= ũ⇤
k

ṽ
k

(40)

The zeroes of ⇠
k

have a particular significance as is clear from the representation (??) of the Chern number, as
they define the ”Fermi surfaces”, where ⇠

k

changes sign. While one typically thinks of a positive chemical potential
providing for such a surface, the characteristic feature of a zero crossing of ⇠

k

can – and does – also occur in our
nonequilibrium setting upon appropriate choice of the Lindblad operators.

As an important technical point for the visualization of the Chern number, we note the following relation:

for k 2 F
�

: r
k

✓
k

= n
2,k

r
k

n
1,k

� n
1,k

r
k

n
2,k

(41)

which holds only on a Fermi surface, since there the component n
3,k

= 0 and thus r
k

= 1 for the modulus of the order
parameter.
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FIG. 2. Two examples of Chern number ⌫ = 0: gap-only situation ũk = 1 and a small gap added to a nontrivial operator
for ⌫ = �1 (ũk = 0.2 + 1

2 (D
�
1 + D�

2 ); cf. Fig. ??). In both cases, the winding numbers around given Fermi surfaces are
nonzero (because the complex phase of the order parameter cannot be gauged away by a nonsingular redefinition of the fermion
operators), but they compensate each other. Obviously, such compensation is only possible for an even number of Fermi
surfaces.

Thus the Hamiltonian (as well as the vector ~n itself) constructed from our spinor is the right object to consider
also in our dissipative context. It is given by

H
k

= N
k

✓ |u
k

|2 � |v
k

|2 u⇤
k

v
k

u
k

v⇤
k

�(|u
k

|2 � |v
k

|2)
◆

=

✓
⇠
k

�
k

�⇤
k

�⇠�k

◆
(38)

This form allows us to interpret the ingredients in more conventional terms. The normalization N
k

plays the role of
the eigenvalues of the Hamiltonian;

N
k

= |ũ
k

|2 + |ṽ
k

|2 = |pr
1

d�
1

+
p
r
2

ei(✓+⇡)/2d�
0

2

|2|pr
1

d�
1

�p
r
2

ei(✓+⇡)/2d�
0

2

|2 + sin k2
1

+ sin k2
2

(39)

The energy is gapped (N
k

> 0 for all k) for nonzero r
0

. For r
0

= 0, there is one gapless point in the spectrum. To find
it, we must seek the simultaneous zeroes of |ũ

k

|2, |ṽ
k

|2. The four distinct zeroes of |ṽ
k

|2 are at (0, 0); (0,⇡); (⇡, 0); (⇡,⇡)
where we have of course the identification of ⇡ and �⇡. In contrast, due to the half-periodicity of the D�

↵

and for
r
1,2

> 0, |ũ
k

|2 can only have a single zero at one of the above locations in the Brillouin zone. A specific choice for
�,�0 will thus single out one of the potentially gapless points k⇤ = {(0, 0); (0,⇡); (⇡, 0); (⇡,⇡)}. In the vicinity of these
points, the spectrum behaves quadratically ⇠ �k2, where �k is the deviation from the gapless point; this behavior is
determined by ṽ

k

.
Based on our numerical experience, the existence of a gapless point appears to be a necessary condition for topo-

logically nontrivial order (but not a su�cient one). This is in contrast to topological equilibrium superconductors,
which can be fully gapped. We discuss this point below further.

Furthermore, we note the identifications

⇠
k

= |ũ
k

|2 � |ṽ
k

|2, �
k

= ũ⇤
k

ṽ
k

(40)

The zeroes of ⇠
k

have a particular significance as is clear from the representation (??) of the Chern number, as
they define the ”Fermi surfaces”, where ⇠

k

changes sign. While one typically thinks of a positive chemical potential
providing for such a surface, the characteristic feature of a zero crossing of ⇠

k

can – and does – also occur in our
nonequilibrium setting upon appropriate choice of the Lindblad operators.

As an important technical point for the visualization of the Chern number, we note the following relation:

for k 2 F
�

: r
k

✓
k

= n
2,k

r
k

n
1,k

� n
1,k

r
k

n
2,k

(41)

which holds only on a Fermi surface, since there the component n
3,k

= 0 and thus r
k

= 1 for the modulus of the order
parameter.

Stabilization of the critical point

~̂nk =
~nk

|~nk|

non-critical critical near critical

➡ need to “plug the hole” (here, near k=0)

vector field:height function:
fermion occ.

C = 0 C = 0C = �1

⌫� =
1

2⇡

I

F�

rk✓k · dk

✓
n1,k

n2,k

◆
= rk

✓
sin ✓k
cos ✓k

◆
n̂3,k = 1� 2n(k)

C =
1

4⇡

Z
d2k ~̂nk(@k1~̂nk ⇥ @k2~̂nk) =

X

�2E
⌫�

• Chern number decomposition: sum of winding numbers around TRI points    within “electron 
region”     , whereE n̂3,k > 0

�
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FIG. 1. An example of Chern number ⌫ = +1 (ũk = 1
2 (D

�
1 + D+

2 )) and ⌫ = �1 (ũk = 1
2 (D

�
1 + D�

2 )) in the presence of a
single Fermi surface. The plot visualizes the form ?? of the Chern number: The color density plot shows the magnitude of the
component n3,k of the unit vector, with blue – negative, red – positive. The Fermi surface, where n3 changes sign, is plotted
in green. The vector field is the (negative) phase gradient �rk✓k according to Eq. ??. Its magnitude is normalized to one for
visual reasons; this is physical only on the Fermi surface, where the Chern number is calculated.

with � = ±, r
i

� 0, 0  ✓  2⇡. These momentum dependent functions have the following Fourier transforms
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and thus are indeed quasilocal, involving a central site i and the four nearest neighbours. They are composed of the
lattice representations of gradient and Laplace (� > 0) operators, respectively.

We make the following observations which determine the ”topological phase diagram”:

• ⌫ = 0: (i) for r
0

> 0, and independently of all other parameters for this case. Here, the zeroes of ũ
k

do not
coincide and the normalization N

k

> 0 for all k. An important implication is the following: in order to generate
nontrivial topological order, a necessary condition is that the ”gap term” r

0

vanishes exactly. Thus, any physical
implementation must be able to generate exactly the lattice di↵erential operators D�

↵

. (ii) For r
0

= 0 and either
r
1

= 0 or r
2

= 0.

• ⌫ = ±1: for r
0

= 0, both r
1

, r
2

> 0 and ✓ 6= ⇡.

• ⌫ = ±2: for r
0

= 0, both r
1,2

> 0, and ✓ = ⇡.

First study the potentially nontrivial case r
0

= 0. We note that theD�

↵

are squares, namelyD+

↵

/2 = cos2(k
↵

/2), D�
↵

/2 =
sin2(k

↵

/2). With d+
↵

= cos(k
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/2), we find
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There are three special points where the function d�
1

+
p
rei(✓+⇡)/2d�

0

2

does not vanish identically and becomes purely
real (or just has a trivial overall phase); these are r

1

= 0, r
2

> 0; r
2

= 0, r
1

> 0 and ✓ = ⇡. In these cases, the Chern
number is even: zero in the first two cases, and ±2 in the last case.

Next we make contact to the more conventional equilibrium problem and study the associated Hamiltonian. Before
doing so, one may ask the question if there is potentially more information in the jump operators than in the
Hamiltonian: For a dark state, the condition that must be fulfilled is �

k

| 
k

i = 0. One may wonder if this contains
more information than a Hamiltonian piece for which the ground state condition is �†

k

�
k

| 
k

i = 0, so that states could
be targeted which are not accessible as ground states of a Hamiltonian. In other words, does the following equivalence
hold:

�
k

| 
k

i = 0 , �†
k

�
k

| 
k

i = 0 (37)

The direction to the right is trivial. The opposite direction holds since �†
k

�
k

is nonnegative and we can sandwich

0 = h 
k

|�†
k

�
k

| 
k

i = h�
k

|�
k

i. This latter orthogonality condition is true if and only if the vector |�
k

i = 0. Thus, the
dark state condition is not more restrictive then the ground state condition for the positive semidefinite Hamiltonian.



Dissipative Hole Plugging

• minimal solution: add momentum selectively non-topological Lindblad operators

LA
k =

p
ge�k2d2

ak

hole plugging

• result: 

finite damping gap
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FIG. 2. (color online) Left panel: n̂3
k

as a function of k
x

at k
y

= 0
for � = 0, d = g = 0 (green dotted), for � = 0.5, d = g = 0
(Red dashed), and for � = 0.5, d = 0.7, g = 1.0 (blue solid). Right
panel: Purity gap p = |~n

k

|2 of the steady state ⇢s
k

as a function of
k
x

at k
y

= 0, � = d = 0.2. Gap at g = 0.1 (blue dotted) in
the topologically trivial phase, purity critical point at g = 0.2 (red
dashed), gap at g = 1.0 (green solid) in the non-trivial phase. Inset:
Phase diagram of the steady state as a function of � = �4 � � and
g. d = 1.0 is fixed. The purple region has Chern number C =
�1, while C = 0 in the bright region. The purity gap closes at the
transition lines. The damping gap is finite everywhere except at the
critical point � = g = 0.

a topologically trivial � = �4 � �, i.e., detuned from the
critical point by � > 0 and switch on LA

j

by ramping up g, we
observe a topological transition associated with a purity gap
closing at g = � (see Fig. 2 right panel). At g > �, the purity
gap reopens and the steady state has Chern number C = �1.
The damping gap stays finite throughout this procedure.

Microscopic implementation. So far, we have generally
analyzed how a superfluid steady state with a non-vanishing
Chern number can occur at the level of a Gaussian Lindblad
master equation (1). In the Hamiltonian case, a supercon-
ducting condensate arises at mean field level in the thermo-
dynamic limit from an interacting particle number conserv-
ing microscopic Hamiltonian. Also in our present dissipa-
tive framework, an effective quadratic master equation with
spontaneously broken U(1) symmetry arises from a micro-
scopic, particle number conserving model described by a mas-
ter equation that is quartic in the field operators. In the follow-
ing, we introduce such a model and argue how it can be ex-
perimentally implemented with cold atoms in optical lattices.
As we confirm numerically, the phenomenology described
above, in particular our dissipative hole-plugging mechanism
is obtained in a mean field approximation analogous to the
one introduced in Ref. [16]. Our model again consists of a
near-critical and -topological set of Lindblad operators `C ,
and an auxiliary set `A. The Lindblad operators have the
number conserving bilinear form `↵

i

= C↵ †
i

A↵

i

, ↵ = C,A

with the creation C↵ †
i

=

P

j

v↵
j�i

 †
j

and annihilation parts
A↵ †

i

=

P

j

u↵

j�i

 
j

. For ↵ = C, the coefficients uC

j

, vC
j

are the same as in Eq. (4). The experimental implemen-
tation of Lindblad operators of such a form has been dis-
cussed in Ref. [17]. The auxiliary operators `A

j

are chosen
such that particles are pumped out of the central region of
the Brillouin zone into the higher momentum states thus re-

flecting the depletion of low momenta which is at the heart
of our hole plugging mechanism. For atoms in optical lat-
tices this can be achieved by momentum selective pump-
ing techniques as described in [22]. In momentum space,
˜`A
k

=

P

q

˜CA †
q�k

˜AA

q

, with ˜CA †
k

= ṽA
k

a†
k

, ˜AA

k

= ũA

k

a
k

.
The momentum selective functions are ideally of the form
ũA

k

= g
u

e�k

2
/d

2
u removing particles from the central region,

and ṽA
k

= g
v

P

i

e�(k�⇡

i

)2/d2
v describing their reappearance

at high momenta ⇡
i

2 {(0,⇡), (⇡, 0), (⇡,⇡)}. The key qual-
itative point to the form of `A

k

that has to be reflected in an
experimental realization is the dominance of processes taking
a particle at the center of the Brillouin zone and transferring a
momentum of order ⇡.

Upon mean field decoupling, the product of the creation
and annhilation part in `C

i

can be linearized and transforms
into its sum [16], yielding precisely the form displayed in
Eq. (4) at half filling. This allows us to evaluate the stationary
state of the master equation with both sets of Lindblad
operators `C , `A at mean field level (see Methods section
below for details). The above general picture, in particular
the efficiency of the dissipative hole-plugging mechanism to
stabilize a state with non-vanishing Chern number is fully
confirmed by the numerical analysis of this microscopic
model. In Fig. 3, we give an explicit example demonstrating
how the self consistent solution of Eq. (15) is capable of
achieving the dissipative hole-plugging mechanism. Our
numerical simulations are done for a lattice of 501⇥ 501 sites
with periodic boundary conditions.

FIG. 3. n̂3
k

= �Tr {⇢s
k

⌧3} as a function of k
x

at k
y

= 0. Red
dashed plot for � = �4 � � = 0.5 in the presence of `C

j

only.
Blue solid plot shows the self-consistent solution of Eq. (15) for
� = 0.5, g

u

= g
v

= 5.0, d
u

= 0.5, d
v

= 1.5 in the presence of both
`C
j

and `A
j

on a lattice of 501⇥ 501 sites.

DISCUSSION

The target state of the explicit construction presented here
resembles the p + ip superconducting ground state intro-
duced by Read and Green [37], i.e., a topological state
with non-vanishing Chern number in symmetry class D [38].
The generalization to gapped quantum anomalous Hall states
aka Chern insulators [39] in symmetry class A, however, is
straightforward.

n3,k = 1� 2nk

• phase diagram

deviation from critical point��
C = 0

C = �1

1�1

➡ dissipative stabilization of a critical topological point into a phase 



Nature of the Dissipative Topological Phase Transition

• A Gaussian translationally invariant state is completely characterized by:

|⇥nk| ⇥ 1 ⌅k ⇤ (��,�]

(pure states, |~nk| = 1)

 
h[a†k, ak]i h[a†k, a

†
�k]i

h[a�k, ak]i h[a�k, a
†
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!
= ~nk~� = Qk

• Topological stability requires additional “purity gap” for mixed density matrix
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• mapping circle to circle (chiral symmetry)

• Winding number topological invariant
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k @kQk) =
1
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Z ⇡
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dk~a ·

⇣
~̂nk ⇥ @k~̂nk
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i.e. mixed states with “purity gap”

• Winding number:

• defined if topology of circle is preserved • circle collapses to line:

modes      completely mixed

8k : |~nk| > 0 9k0 : |~nk0 | = 0
k0

• pure states: 8k : |~nk| = 1

W =
1

4⇡i

Z ⇡

�⇡
dk tr(⌃Q�1

k @kQk) =
1

2⇡

Z ⇡

�⇡
dk~a ·

⇣
~̂nk ⇥ @k~̂nk

⌘

~̂nk =
~nk

|~nk|

“purity gap” closes

• as long as the purity gap is finite, smoothly deform to a pure state

➡ two gaps required for topological stability: damping and purity gap

|~nk| > 0for finite purity gap~nk ! ~̂nk

• in this case, topological invariant well defined

Topological invariant for mixed density matrices

rationalization: J. C. Budich, S. Diehl, PRB (2015)
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that the additional auxiliary jump operators LA

j

are capable
of lifting the isolated points at which the LC

j

become topo-
logically non-trivial to an extended phase. This hole plug-
ging mechanism is illustrated in terms of the Berry curvature
F = Tr

�

P
k

⇥

(@
k

x

P
k

), (@
k

y

P
k

)

⇤�

, i.e., the integrand of Eq.
(2) in Fig. 1: The central peak in the Berry curvature destroy-
ing the non-trivial Chern number is suppressed by the action
of the LA

j

jump operators thus maintaining C = �1.
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FIG. 2. (color online) Left panel: n̂2 = �Tr
�
i�̄s⌧2

 
(see Eq. (7)) as

a function of k
x

at k
y

= 0 for � = 0 (green dotted), for � = 0.1, d =
g = 0 (Red dashed), and for � = 0.1, d = 0.2, g = 0.5 (blue solid).
Right panel: Purity p of the steady state �̃s(k) as a function of k

x

at
k
y

= 0. � = d = 0.2 in all plots. Gap at g = 0.1 (blue dotted) in
the topologically trivial phase, critical point at g = 0.2 (red dashed),
gap at g = 1.0 (green solid) in the topologically non-trivial phase.

If we start in the absence of LA

j

with a topologically trivial
� = �4 + �, i.e., detuned from the critical point by � > 0

and switch on LA

j

by ramping up g, we observe a topological
phase transition associated with a purity gap closing at g = �
(see Fig. 2). At g > �, the purity gap reopens and the steady
state has Chern number C = �1. The damping gap stays
finite throughout this procedure. If we start right from the
critical point � = �4 and switch on g, the damping gap opens
continuously and the purity gap never closes. In this case
C = �1 throughout the process. If then, at finite g, a � < g is
switched on continuously, no topological phase transition is
observed and the Chern number stays unchanged at C = �1.

Experimental implementation –

Conclusion – We have proposed a novel mechanism to
dissipatively stabilize topological states of quantum matter
with non-vanishing Chern number. Our generally applicable
construction draws intuition from the analysis of coherent
states that form an over-complete non-orthogonal basis of a
Landau level: We start from a non-orthogonal set of lattice
orbitals (jump operators LC

j

) that have support only on
nearest neighbors of their home-site j and that span a Chern
band. Due to the essential over-completeness by one state
of any such set, the damping gap  closes. This renders the
topological properties of the steady state obtained in analogy
to a Hamiltonian scenario unstable against continuous pertur-
bations in the jump operators. Most interestingly, here, we
are able to overcome this fine-tuning issue by introducing an
additional set of simple Gaussian (exponentially localized)
jump operators LG

j

which stabilize a steady state with
non-vanishing Chern number by means of a finite damping

gap  in a wide parameter range. Our scheme relying on the
combination of these two sets of jump operators crucially
exploits the open quantum system character of the problem
and hence goes conceptually beyond any Hamiltonian setting.
We present benchmark results on the dissipative preparation
of Chern insulators [21] in symmetry class A [22] and
topological superconductors [23] in symmetry class D [22],
respectively. The topology of the resulting steady states is
verified by direct calculation of the Chern number. Finally,
we discuss feasible schemes for the experimental realization
of our proposal with cold atoms in optical lattices.
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Quartic particle number conserving master equation

Critical Lindblad operators (Diehl et al. Nat. Phys. 2011, NJP 2013)
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Microscopic Model

• combine critical Lindblad operators with momentum selective pumping

• self-consistent mean field theory for weak 
perturbation from exactly known pair state

quasi-local near critical p-wave operators

SD, E. Rico, M. Baranov, P. Zoller, Nat. 
Phys. (2011); C. Bardyn et al. NJP (2013)
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right panel of Fig. 2). If we start in the absence of LA

j

with

FIG. 2. (color online) Left panel: n̂3
k

as a function of k
x

at k
y

= 0
for � = 0, d = g = 0 (green dotted), for � = 0.5, d = g = 0
(Red dashed), and for � = 0.5, d = 0.7, g = 1.0 (blue solid). Right
panel: Purity gap p = |~n

k

|2 of the steady state ⇢s
k

as a function of
k
x

at k
y

= 0, � = d = 0.2. Gap at g = 0.1 (blue dotted) in
the topologically trivial phase, purity critical point at g = 0.2 (red
dashed), gap at g = 1.0 (green solid) in the non-trivial phase. Inset:
Phase diagram of the steady state as a function of � = �4 � � and
g. d = 1.0 is fixed. The purple region has Chern number C =
�1, while C = 0 in the bright region. The purity gap closes at the
transition lines. The damping gap is finite everywhere except at the
critical point � = g = 0.

a topologically trivial � = �4 � �, i.e., detuned from the
critical point by � > 0 and switch on LA

j

by ramping up g, we
observe a topological transition associated with a purity gap
closing at g = � (see Fig. 2 right panel). At g > �, the purity
gap reopens and the steady state has Chern number C = �1.
The damping gap stays finite throughout this procedure.

Microscopic implementation. So far, we have generally
analyzed how a superfluid steady state with a non-vanishing
Chern number can occur at the level of a Gaussian Lindblad
master equation (1). In the Hamiltonian case, a supercon-
ducting condensate arises at mean field level in the thermo-
dynamic limit from an interacting particle number conserv-
ing microscopic Hamiltonian. Also in our present dissipa-
tive framework, an effective quadratic master equation with
spontaneously broken U(1) symmetry arises from a micro-
scopic, particle number conserving model described by a mas-
ter equation that is quartic in the field operators. In the follow-
ing, we introduce such a model and argue how it can be ex-
perimentally implemented with cold atoms in optical lattices.
As we confirm numerically, the phenomenology described
above, in particular our dissipative hole-plugging mechanism
is obtained in a mean field approximation analogous to the
one introduced in Ref. [16]. Our model again consists of a
near-critical and -topological set of Lindblad operators `C ,
and an auxiliary set `A. The Lindblad operators have the
number conserving bilinear form `↵
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. For ↵ = C, the coefficients uC

j

, vC
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are the same as in Eq. (4). The experimental implemen-
tation of Lindblad operators of such a form has been dis-
cussed in Ref. [17]. The auxiliary operators `A

j

are chosen
such that particles are pumped out of the central region of
the Brillouin zone into the higher momentum states thus re-

flecting the depletion of low momenta which is at the heart
of our hole plugging mechanism. For atoms in optical lat-
tices this can be achieved by momentum selective pump-
ing techniques as described in [22]. In momentum space,
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2 {(0,⇡), (⇡, 0), (⇡,⇡)}. The key qual-
itative point to the form of `A

k

that has to be reflected in an
experimental realization is the dominance of processes taking
a particle at the center of the Brillouin zone and transferring a
momentum of order ⇡.

Upon mean field decoupling, the product of the creation
and annhilation part in `C

i

can be linearized and transforms
into its sum [16], yielding precisely the form displayed in
Eq. (4) at half filling. This allows us to evaluate the stationary
state of the master equation with both sets of Lindblad
operators `C , `A at mean field level (see Methods section
below for details). The above general picture, in particular
the efficiency of the dissipative hole-plugging mechanism to
stabilize a state with non-vanishing Chern number is fully
confirmed by the numerical analysis of this microscopic
model. In Fig. 3, we give an explicit example demonstrating
how the self consistent solution of Eq. (15) is capable of
achieving the dissipative hole-plugging mechanism. Our
numerical simulations are done for a lattice of 501⇥ 501 sites
with periodic boundary conditions.

3 2 1 1 2 3 kx

1.0

0.5

0.5

1.0

- - -

-

-

FIG. 3. n̂3
k

= �Tr {⇢s
k

⌧3} as a function of k
x

at k
y

= 0. Red
dashed plot for � = �4 � � = 0.5 in the presence of `C

j

only.
Blue solid plot shows the self-consistent solution of Eq. (15) for
� = 0.5, g

u

= g
v

= 5.0, d
u

= 0.5, d
v

= 1.5 in the presence of both
`C
j

and `A
j

on a lattice of 501⇥ 501 sites.

DISCUSSION

The target state of the explicit construction presented here
resembles the p + ip superconducting ground state intro-
duced by Read and Green [37], i.e., a topological state
with non-vanishing Chern number in symmetry class D [38].
The generalization to gapped quantum anomalous Hall states
aka Chern insulators [39] in symmetry class A, however, is
straightforward.

➡ full qualitative agreement with general analysis of quadratic master equation
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FIG. 2. Two examples of Chern number ⌫ = 0: gap-only situation ũk = 1 and a small gap added to a nontrivial operator
for ⌫ = �1 (ũk = 0.2 + 1

2 (D
�
1 + D�

2 ); cf. Fig. ??). In both cases, the winding numbers around given Fermi surfaces are
nonzero (because the complex phase of the order parameter cannot be gauged away by a nonsingular redefinition of the fermion
operators), but they compensate each other. Obviously, such compensation is only possible for an even number of Fermi
surfaces.

Thus the Hamiltonian (as well as the vector ~n itself) constructed from our spinor is the right object to consider
also in our dissipative context. It is given by

H
k

= N
k

✓ |u
k

|2 � |v
k

|2 u⇤
k

v
k

u
k

v⇤
k

�(|u
k

|2 � |v
k

|2)
◆

=

✓
⇠
k

�
k

�⇤
k

�⇠�k

◆
(38)

This form allows us to interpret the ingredients in more conventional terms. The normalization N
k

plays the role of
the eigenvalues of the Hamiltonian;

N
k

= |ũ
k

|2 + |ṽ
k

|2 = |pr
1

d�
1

+
p
r
2

ei(✓+⇡)/2d�
0

2

|2|pr
1

d�
1

�p
r
2

ei(✓+⇡)/2d�
0

2

|2 + sin k2
1

+ sin k2
2

(39)

The energy is gapped (N
k

> 0 for all k) for nonzero r
0

. For r
0

= 0, there is one gapless point in the spectrum. To find
it, we must seek the simultaneous zeroes of |ũ

k

|2, |ṽ
k

|2. The four distinct zeroes of |ṽ
k

|2 are at (0, 0); (0,⇡); (⇡, 0); (⇡,⇡)
where we have of course the identification of ⇡ and �⇡. In contrast, due to the half-periodicity of the D�

↵

and for
r
1,2

> 0, |ũ
k

|2 can only have a single zero at one of the above locations in the Brillouin zone. A specific choice for
�,�0 will thus single out one of the potentially gapless points k⇤ = {(0, 0); (0,⇡); (⇡, 0); (⇡,⇡)}. In the vicinity of these
points, the spectrum behaves quadratically ⇠ �k2, where �k is the deviation from the gapless point; this behavior is
determined by ṽ

k

.
Based on our numerical experience, the existence of a gapless point appears to be a necessary condition for topo-

logically nontrivial order (but not a su�cient one). This is in contrast to topological equilibrium superconductors,
which can be fully gapped. We discuss this point below further.

Furthermore, we note the identifications

⇠
k

= |ũ
k

|2 � |ṽ
k

|2, �
k

= ũ⇤
k

ṽ
k

(40)

The zeroes of ⇠
k

have a particular significance as is clear from the representation (??) of the Chern number, as
they define the ”Fermi surfaces”, where ⇠

k

changes sign. While one typically thinks of a positive chemical potential
providing for such a surface, the characteristic feature of a zero crossing of ⇠

k

can – and does – also occur in our
nonequilibrium setting upon appropriate choice of the Lindblad operators.

As an important technical point for the visualization of the Chern number, we note the following relation:

for k 2 F
�

: r
k

✓
k

= n
2,k

r
k

n
1,k

� n
1,k

r
k

n
2,k

(41)

which holds only on a Fermi surface, since there the component n
3,k

= 0 and thus r
k

= 1 for the modulus of the order
parameter.

• Competition of Topology and Locality in 2D

• Critical Chern states require fine tuning

• Stabilization of critical point into extended phase via hole 
plugging mechanism

• Targeting cooling of conventionally and topologically 
ordered quantum states

• 1D dissipative Kitaev chain: parallels Hamiltonian case

• 2D dissipative Chern insulator/superfluid: Harness intrinsic open 
system properties:


