Topology by Dissipation in Atomic Fermion Systems: Dissipative Chern Insulators

Sebastian Diehl
Institute for Theoretical Physics, Technical University Dresden

Collaborations:
J. C. Budich, M. A. Baranov, P. Zoller (Innsbruck)

Motivation

Common theme:

- closed system (isolated from environment)
- stationary states in thermodynamic equilibrium
= thermalization/equilibration (PennState, Berkeley, Chicago, ...)
\Rightarrow sweep and quench many-body dynamics (Munich, Vienna)
\Rightarrow metastable excited many-body states (Innsbruck, MIT, ...)

Motivation

Common theme:

- closed system (isolated from environment)
- stationary states in thermodynamic equilibrium

Novel Situation: Cold atoms as open many-body systems

- natural occurrences of dissipation

\Rightarrow no immediate condensed matter counterpart
- use manipulation tools of quantum optics

\Rightarrow drive/dissipation as dominant resource of many-body dynamics!

Motivation: Topology by Dissipation

Basic Setting: Thinning out a density matrix to a pure state ("cooling")

Key Questions:

- Is topological order an exclusive feature of Hamiltonian ground states, or pure states? related: Kitagawa, Berg, Rudner, Demler, PRB (2010); Lindner, Refael, Galitski, Nature Phys. (2011). Kapit, Hafezi, Simon, PRX (2014).
- Which topological states be reached by a targeted, dissipative cooling process?
- What are proper microscopic, experimentally realizable models?
- What are the parallels and differences to the equilibrium (ground state) scenario?

Outline

Order by dissipation

Topology by dissipation

One Dimension

SD, E. Rico, M. A. Baranov, P. Zoller, Nat. Phys. (2011)

Two Dimensions

C. Bardyn, E. Rico, M. Baranov, A. Imamoglu, P. Zoller, SD, PRL (2012); New Po (20);

Dissipative Chern insulators

Many-Body Physics with Dissipation: Description

- Many-body master equations

$$
\partial_{t} \rho=\underbrace{-i[H, \rho]}_{\text {coherent evolution }}+\kappa \underbrace{\sum_{i}\left(L_{i} \rho L_{i}^{\dagger}-\frac{1}{2}\left\{L_{i}^{\dagger} L_{i}, \rho\right\}\right)}_{\substack{\text { dissipative evolution } \\ \mathcal{L}[\rho]^{--} \text {Liouvillian operator }}}
$$

- extend notion of Hamiltonian engineering to dissipative sector
- microscopically well controlled non-equilibrium many-body quantum systems
- here: focus on $\mathrm{H}=0$
- Important concept: Dark states

$$
\begin{array}{r}
L_{i}|D\rangle=0 \quad \forall i \\
\Rightarrow \mathcal{L}[|D\rangle\langle D|]=0
\end{array}
$$

\Rightarrow time evolution stops when $\quad \rho=|D\rangle\langle D|$

Many-Body Physics with Dissipation: Description

- Many-Body master equations

$$
\partial_{t} \rho=-i[H, \rho]+\kappa \sum_{i}\left(L_{i} \rho L_{i}^{\dagger}-\frac{1}{2}\left\{L_{i}^{\dagger} L_{i}, \rho\right\}\right)
$$

$$
\mathcal{L}[\rho] \quad \text {-- Liouvillian operator }
$$

- Interesting situation: unique dark state solution
B. Kraus, SD et al. PRA 08

- dark subspace one-dimensional
- no other stationary solutions
- directed motion in Hilbert space $\quad \rho \xrightarrow{t \rightarrow \infty}|D\rangle\langle D|$
= dissipation increases purity (entropy pump)

Paired Fermionic Dark States: Mechanism

- proximity of magnetic and superconducting order in fermion ground states
- Lindblad operators: $\ell_{i-}^{+}=c_{i-1, \uparrow}^{\dagger} c_{i, \downarrow}$

- magnetic dark state based on Fermi statistics
- Superconducting state: delocalized Neel order

$$
\left.\left|\mathrm{BCS}_{1}\right\rangle=\left(d^{\dagger}\right)^{N}|\operatorname{vac}\rangle, d^{\dagger}=\sum_{i}\left(c_{i+1, \uparrow}^{\dagger}+c_{i-1, \uparrow}^{\dagger}\right) c_{i, \downarrow}^{\dagger}\right\rangle ゆ / ゆ /
$$

\Rightarrow Lindblad operators: $L_{i}^{+}=\ell_{i,+}^{+}+\ell_{i,-}^{+}=\left(c_{i+1, \uparrow}^{\dagger}+c_{i-1, \uparrow}^{\dagger}\right) c_{i, \downarrow}$

- sc dark state based on additional phase locking
= Combine fermionic Pauli blocking with phase locking

Dissipative Pairing: Set of Lindblad Operators

- The full set of Lindblad operators is found from

$$
\left[L_{i}^{\alpha}, G^{\dagger}\right]=0 \quad \forall i, \alpha \quad|D(N)\rangle \sim G^{\dagger N}|\operatorname{vac}\rangle
$$

- given by

$$
L_{i}^{\alpha}=\left(c_{i+1}^{\dagger}+c_{i-1}^{\dagger}\right) \sigma^{\alpha} c_{i}{ }^{\text {Pauim maticices }} c_{i}=\binom{c_{\uparrow, i}}{c_{\downarrow, i}}
$$

entropy pump

unique dark state

- Projective pair condensation mechanism, does not rely on attractive conservative forces

Fixed Number vs. Fixed Phase Lindblad Operators

- spinless fermions for simplicity
- fixed number Lindblad operators

$$
L_{i}=C_{i}^{\dagger} A_{i}
$$

- resulting dark state

$$
|B C S, N\rangle=G^{\dagger N}|\operatorname{vac}\rangle \quad \quad|B C S, \theta\rangle=\exp \left(r e^{\mathrm{i} \theta} G^{\dagger}\right)|\mathrm{vac}\rangle
$$

- fixed phase Lindblad operators

$$
\ell_{i}=C_{i}^{\dagger}+r e^{\mathrm{i} \theta} A_{i}
$$

- resulting dark state (with $\Delta N \sim 1 / \sqrt{N}$

- requirements
translation invariant creation and annihilation part

$$
\begin{aligned}
C_{i}^{\dagger} & =\sum_{j} v_{i-j} a_{j}^{\dagger}
\end{aligned} \quad C_{k}^{\dagger}=v_{k} a_{k}^{\dagger}, ~ A_{k}=u_{k} a_{k}
$$

antisymmetry

$$
\begin{aligned}
\varphi_{k} & =\frac{v_{k}}{u_{k}}=-\varphi_{-k} \\
G^{\dagger} & =\sum_{k} \varphi_{k} c_{-k}^{\dagger} c_{k}^{\dagger}
\end{aligned}
$$

- comment: construct exactly solvable interacting Hubbard models with parent Hamiltonian
exact number conserving Majorana wavefunction: lemini, Mazza, Rossini, SD, Fazio, arxiv (2015)

$$
H=\sum_{i} L_{i}^{\dagger} L_{i} \quad L_{i}|D\rangle=0 \forall i
$$

Spontaneous Symmetry Breaking and Dissipative Gap

- use equivalence of fixed number and fixed phase states in thdyn limit
- use exact knowledge of stationary state: linearized long time evolution

$$
\mathcal{L}[\rho]=\kappa \sum_{i}\left[\ell_{i} \rho \ell_{i}^{\dagger}-\frac{1}{2}\left\{\ell_{i}^{\dagger} \ell_{i}, \rho\right\}\right]=\sum_{\mathbf{q}} \kappa_{\mathbf{q}}\left[\ell_{\mathbf{q}} \rho \ell_{\mathbf{q}}^{\dagger}-\frac{1}{2}\left\{\ell_{\mathbf{q}}^{\dagger} \ell_{\mathbf{q}}, \rho\right\}\right]
$$

- properties
- relation to microscopic operators

$$
L_{i}=C_{i}^{\dagger} A_{i} \xrightarrow[\text { "low energy limit" }]{t \rightarrow \infty}
$$

fixed by average particle number
fixed spontaneously

- effective fermionic quasiparticle operators

$$
\ell_{\mathbf{q}}|B C S, \theta\rangle=0 \text {; fulfill Dirac algebra -> uniqueness }
$$

- dissipative gap in the damping rate

$$
\left.\kappa_{\mathbf{q}}=\kappa_{0} \int_{\mathrm{BZ}} \frac{d^{2} \mathbf{k}}{(2 \pi)^{2}} \frac{\left|u_{\mathbf{k}} v_{\mathbf{k}}\right|^{2}}{\left|u_{\mathbf{k}}\right|^{2}+\left|\alpha v_{\mathbf{k}}\right|^{2}}\left(\left|u_{\mathbf{q}}^{2}\right|+\left|v_{\mathbf{q}}^{2}\right|\right) \geq \kappa_{0} n\right)
$$

- Scale generated in long time evolution ; exponentially fast approach of steady state
- Robustness of prepared state against perturbations

Topology by Dissipation: Dissipative Kitaev Wire

SD, E. Rico, M. A. Baranov, P. Zoller, Nat. Phys. 7, 971 (2011)

Kitaev's quantum wire (Hamiltonian scenario)

- spinless superconducting fermions on a lattice

Kitaev (2001)

- Hamiltonian in Bogoliubov basis $H \sim \sum\left(\tilde{a}_{i}^{\dagger} \tilde{a}_{i}-\frac{1}{2}\right) \quad \tilde{a}_{i}|G\rangle=0 \forall i$
- two inequivalent representatives

$$
\tilde{a}_{i}=a_{i}
$$

quasilocal!

$$
\tilde{a}_{i}=\frac{1}{2}\left(a_{i+1}+a_{i+1}^{\dagger}-a_{i}+a_{i}^{\dagger}\right)
$$

trivial phase
bulk

- p-wave superfluid in ground state
- gapped spectrum
nontrivial phase

- unpaired zero energy Majorana edge modes, or
- non-local Bogoliubov fermion

Dissipative Majorana Quantum Wire

- Kitaev's Bogoliubov operators as Lindblad operators $\quad \tilde{a}_{i}=\frac{1}{2}\left(a_{i+1}+a_{i+1}^{\dagger}-a_{i}+a_{i}^{\dagger}\right)$ quasilocal

$$
L_{i}=\tilde{a}_{i}
$$

- master equation

$$
\dot{\rho}=\kappa \sum_{i=1}^{N-1}\left(\tilde{a}_{i} \rho \tilde{a}_{i}^{\dagger}-\frac{1}{2} \tilde{a}_{i}^{\dagger} \tilde{a}_{i} \rho-\rho \frac{1}{2} \tilde{a}_{i}^{\dagger} \tilde{a}_{i}\right)
$$

bulk driven to pure steady state:
Kitaev's ground state

$$
\left.\tilde{a}_{i} \mid \mathrm{p}-\text { wave }\right\rangle=0(i=1, \ldots, N-1)
$$

dark state $=$ topological p-wave

Dissipative Majorana Quantum Wire

- Kitaev's Bogoliubov operators as Lindblad operators $\quad \tilde{a}_{i}=\frac{1}{2}\left(a_{i+1}+a_{i+1}^{\dagger}-a_{i}+a_{i}^{\dagger}\right)$ quasilocal

$$
L_{i}=\tilde{a}_{i}
$$

- master equation

$$
\dot{\rho}=\kappa \sum_{i=1}^{N-1}\left(\tilde{a}_{i} \rho \tilde{a}_{i}^{\dagger}-\frac{1}{2} \tilde{a}_{i}^{\dagger} \tilde{a}_{i} \rho-\rho \frac{1}{2} \tilde{a}_{i}^{\dagger} \tilde{a}_{i}\right)
$$

bulk driven to pure steady state:
Kitaev's ground state

$$
\left.\tilde{a}_{i} \mid \mathrm{p}-\text { wave }\right\rangle=0(i=1, \ldots, N-1)
$$

dark state $=$ topological p-wave

Majorana edge modes decoupled from dissipation

$$
|0\rangle,|1\rangle=\tilde{a}_{N}^{\dagger}|0\rangle
$$

non-local decoherence free subspace

Dissipative Majorana Quantum Wire

dissipative

Edge - Bulk:

- dynamically isolated from each other

$$
\begin{aligned}
& \rho_{\text {bulk-edge }} \lesssim e^{-\lambda_{\text {gap }} t} \rho_{\text {bulk-edge }}(0) \rightarrow 0 \\
\Rightarrow & t \rightarrow \infty: \rho \rightarrow \rho_{\text {edge }} \otimes \rho_{\text {bulk }}
\end{aligned}
$$

- edge mode subspace protected by dissipative gap

$$
\left.\rho_{\text {bulk }}(\infty)=\mid \mathrm{p}-\text { wave }\right\rangle\langle\mathrm{p}-\text { wave }|
$$

bulk cooled to pure steady state:
Kitaev's ground state

$$
\left.\tilde{a}_{i} \mid \mathrm{p}-\text { wave }\right\rangle=0(i=1, \ldots, N-1)
$$

dark state $=$ topological p-wave

$$
\dot{\rho}_{\text {edge }}=0 \quad\left(\rho_{\text {edge }}\right)_{\alpha \beta} \equiv\langle\alpha| \rho_{\text {edge }}|\beta\rangle \quad|\alpha\rangle \in\{|0\rangle,|1\rangle\}
$$

Majorana edge modes decoupled from dissipation

$$
|0\rangle,|1\rangle=\tilde{a}_{N}^{\dagger}|0\rangle
$$

non-local decoherence free subspace

Implementation with Fermionic Atoms

- We propose microscopically

$$
J_{i}=\left(a_{i}^{\dagger}+a_{i+1}^{\dagger}\right)\left(a_{i}-a_{i+1}\right)
$$

by immersion of driven system into BEC reservoir

(i) Drive: coherent coupling to auxiliary system with double wavelength Raman laser

Implementation with Fermionic Atoms

- We propose microscopically

$$
J_{i}=\left(a_{i}^{\dagger}+a_{i+1}^{\dagger}\right)\left(a_{i}-a_{i+1}\right)
$$

by immersion of driven system into BEC reservoir

(ii) Dissipation: phonon emission into superfluid reservoir

Implementation with Fermionic Atoms

- We propose microscopically

$$
J_{i}=\left(a_{i}^{\dagger}+a_{i+1}^{\dagger}\right)\left(a_{i}-a_{i+1}\right)
$$

by immersion of driven system into BEC reservoir

- Connection to quadratic theory: we obtain
fixed number

Topology by Dissipation: Dissipative Chern Insulators

J. C. Budich, P. Zoller, SD, PRA (2015)

Dissipative Chern Insulators (BdG Superfluids/-conductors)

- Q: How general is the concept of "Topology by Dissipation"?
- recipe for pure dissipative topological states (so far)
- Bogoliubov eigenoperators as Lindblad operators $\quad H_{\text {parent }}=\sum_{i} L_{i}^{\dagger} L_{i} \quad L_{i}|G\rangle=0 \forall i$
- Hamiltonian ground state as dissipative dark state $|D\rangle=|G\rangle$
- quasi-locality of Wannier functions key requirement for physical realization

$$
L_{i}=\sum_{j} u_{j-i} a_{j}+v_{j-i} a_{j}^{\dagger}
$$

- fundamental caveat:
- no exponentially localized Wannier functions exist for states with non-vanishing Chern number
- Landau levels: Wannier functions decay $\sim r^{-2}$
D. J. Thouless, J. Phys. C (1984);
- general band structures
C. Brouder et al. PRL (2007)
\Rightarrow topology interferes with natural locality of the Lindblad operators

Model

- Strategy: combine
- critical (topological) quasi-local Lindblad operators
- non-topological Lindblad stabilizing critical point
- Lindblad operators generating dissipative dynamics:
- starting point: interacting Liouvillian with $\quad L_{i}=C_{i}^{\dagger} A_{i} \quad$ \& long time linearization
- e.g. half filling $L_{i}=C_{i}^{\dagger}+A_{i}$
- creation part
$C_{i}^{\dagger}=\beta a_{i}^{\dagger}+\left(a_{i_{1}}^{\dagger}+a_{i_{2}}^{\dagger}+a_{i_{3}}^{\dagger}+a_{i_{4}}^{\dagger}\right)$ s -wave symmetric creation part
- annihilation part

$$
\begin{aligned}
A_{i} & =\left(a_{i_{1}}+\mathrm{i} a_{i_{2}}-a_{i_{3}}-\mathrm{i} a_{i_{4}}\right) \quad \text { local circulation } \\
& =\nabla_{i, x} a_{i}+\mathrm{i} \nabla_{i, y} a_{i} \quad \text { p-wave symmetric annihilation part }
\end{aligned}
$$

Observations

- pure stationary state: $\left\{L_{i}, L_{j}\right\}=0,\left\{L_{i}, L_{j}^{\dagger}\right\} \neq 0 \forall i, j$
- standard 2D diagnostics via first Chern number

$$
\mathcal{C}=\frac{1}{4 \pi} \int d^{2} k \vec{n}_{\mathbf{k}}\left(\partial_{k_{1}} \vec{n}_{\mathbf{k}} \times \partial_{k_{2}} \vec{n}_{\mathbf{k}}\right)
$$

- $\quad \vec{n}_{\mathbf{k}}$ characterizes the pure Gaussian state

$$
\begin{array}{cc}
\left(\begin{array}{cc}
\left\langle\left[a_{\mathbf{k}}^{\dagger}, a_{\mathbf{k}}\right]\right\rangle & \left\langle\left[a_{\mathbf{k}}^{\dagger}, a_{-\mathbf{k}}^{\dagger}\right]\right\rangle \\
\left\langle\left[a_{-\mathbf{k}}, a_{\mathbf{k}}\right]\right\rangle & \left\langle\left[a_{-\mathbf{k}}, a_{-\mathbf{k}}^{\dagger}\right]\right\rangle
\end{array}\right)=\vec{n}_{\mathbf{k}} \vec{\sigma} \\
\left|\vec{n}_{\mathbf{k}}\right|=1 \quad \text { pure state }
\end{array}
$$

- Chern number vanishes except for special points
- special points are critical: closing of damping gap

\Rightarrow but: Lindblad operators local, how can C be nonzero?

Physics at the dissipative critical point

- momentum space Lindblad operators

$$
\begin{aligned}
& L_{\mathbf{k}}=\tilde{u}_{\mathbf{k}} a_{\mathbf{k}}+\tilde{v}_{\mathbf{k}} a_{-\mathbf{k}}^{\dagger} \\
& B_{\mathbf{k}}=\binom{\tilde{u}_{\mathbf{k}}}{\tilde{v}_{\mathbf{k}}}=\binom{2 i\left(\sin \left(k_{x}\right)+i \sin \left(k_{y}\right)\right)}{\beta+2\left(\cos \left(k_{x}\right)+\cos \left(k_{y}\right)\right)}
\end{aligned}
$$

- critical point $\beta=-4$: there is one point $\mathbf{k}_{*}=0$ where

$$
L_{\mathbf{k}_{*}}=0
$$

- overcompleteness of quasi-local (pseudo) Bloch/Wannier functions necessary to obtain nonzero Chern number
E. Rashba, L. Zhukov, A. Efros, PRB (1997)
- implies damping gap closing: $\kappa_{\mathbf{k}_{*}}=\left\{L_{\mathbf{k}_{*}}^{\dagger}, L_{\mathbf{k}_{*}}\right\}=0$
\Rightarrow quasilocal Lindblad operators can support critical Chern states only

Stabilization of the critical point

- Chern number decomposition: sum of winding numbers around TRI points λ within "electron region" \mathcal{E}, where $\hat{n}_{3, \mathbf{k}}>0$

$$
\begin{gathered}
\mathcal{C}=\frac{1}{4 \pi} \int d^{2} \mathbf{k} \hat{\vec{n}}_{\mathbf{k}}\left(\partial_{k_{1}} \hat{\vec{n}}_{\mathbf{k}} \times \partial_{k_{2}} \hat{\vec{n}}_{\mathbf{k}}\right)=\sum_{\lambda \in \mathcal{E}} \nu_{\lambda} \\
\nu_{\lambda}=\frac{1}{2 \pi} \oint_{\mathcal{F}_{\lambda}} \nabla_{\mathbf{k}} \theta_{\mathbf{k}} \cdot d \mathbf{k}
\end{gathered}
$$

vector field: $\quad\binom{n_{1, \mathbf{k}}}{n_{2, \mathbf{k}}}=r_{\mathbf{k}}\binom{\sin \theta_{\mathbf{k}}}{\cos \theta_{\mathbf{k}}}$
height function: $\quad \hat{n}_{3, \mathbf{k}}=1-2 n(\mathbf{k})$ fermi

Stabilization of the critical point

- Chern number decomposition: sum of winding numbers around TRI points λ within "electron region" \mathcal{E}, where $\hat{n}_{3, \mathbf{k}}>0$

$$
\mathcal{C}=\frac{1}{4 \pi} \int d^{2} \mathbf{k} \hat{\vec{n}}_{\mathbf{k}}\left(\partial_{k_{1}} \hat{\vec{n}}_{\mathbf{k}} \times \partial_{k_{2}} \hat{\vec{n}}_{\mathbf{k}}\right)=\sum_{\lambda \in \mathcal{E}} \nu_{\lambda}
$$

$$
\begin{gathered}
\hat{\vec{n}}_{k}=\frac{\vec{n}_{k}}{\left|\vec{n}_{k}\right|} \\
\nu_{\lambda}=\frac{1}{2 \pi} \oint_{\mathcal{F}_{\lambda}} \nabla_{\mathbf{k}} \theta_{\mathbf{k}} \cdot d \mathbf{k}
\end{gathered}
$$

height function: $\quad \hat{n}_{3, \mathbf{k}}=1-2 n(\mathbf{k})$ vector field: $\quad\binom{n_{1, \mathbf{k}}}{n_{2, \mathbf{k}}}=r_{\mathbf{k}}\binom{\sin \theta_{\mathbf{k}}}{\cos \theta_{\mathbf{k}}}$ feı

non-critical

$$
\mathcal{C}=0
$$

critical

$$
\mathcal{C}=-1
$$

near critical

$$
\mathcal{C}=0
$$

\Rightarrow need to "plug the hole" (here, near $k=0$)

Dissipative Hole Plugging

- minimal solution: add momentum selectively non-topological Lindblad operators

$$
L_{\mathbf{k}}^{A}=\sqrt{g} e^{-\mathbf{k}^{2} d^{2}} a_{\mathbf{k}}
$$

- result:

finite damping gap
- phase diagram

\Rightarrow dissipative stabilization of a critical topological point into a phase

Nature of the Dissipative Topological Phase Transition

- Topological stability requires additional "purity gap" for mixed density matrix
- A Gaussian translationally invariant state is completely characterized by:

$$
\left(\begin{array}{cc}
\left\langle\left[a_{k}^{\dagger}, a_{k}\right]\right\rangle & \left\langle\left[a_{k}^{\dagger}, a_{-k}^{\dagger}\right]\right\rangle \\
\left\langle\left[a_{-k}, a_{k}\right]\right\rangle & \left\langle\left[a_{-k}, a_{-k}^{\dagger}\right]\right\rangle
\end{array}\right)=\vec{n}_{k} \vec{\sigma}=Q_{k} \quad\left|\vec{n}_{k}\right| \leq 1 \quad \forall k \in(-\pi, \pi]
$$

- mapping circle to circle (chiral symmetry) $\quad \vec{n}_{k}: S^{1} \rightarrow S^{1} \quad$ (pure states, $\left|\vec{n}_{k}\right|=1$)

- Winding number topological invariant

$$
W=\frac{1}{4 \pi \mathrm{i}} \int_{-\pi}^{\pi} d k \operatorname{tr}\left(\Sigma Q_{k}^{-1} \partial_{k} Q_{k}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d k \vec{a} \cdot\left(\hat{\vec{n}}_{k} \times \partial_{k} \hat{\vec{n}}_{k}\right)
$$

Topological invariant for mixed density matrices

- Winding number: $\quad W=\frac{1}{4 \pi \mathrm{i}} \int_{-\pi}^{\pi} d k \operatorname{tr}\left(\Sigma Q_{k}^{-1} \partial_{k} Q_{k}\right)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} d k \vec{a} \cdot\left(\hat{\vec{n}}_{k} \times \partial_{k} \hat{\vec{n}}_{k}\right)$
- pure states: $\forall k:\left|\vec{n}_{k}\right|=1$

$$
\hat{\vec{n}}_{k}=\frac{\vec{n}_{k}}{\left|\vec{n}_{k}\right|}
$$

- defined if topology of circle is preserved

$$
\forall k:\left|\vec{n}_{k}\right|>0
$$

i.e. mixed states with "purity gap"

- circle collapses to line:

$$
\exists k_{0}:\left|\vec{n}_{k_{0}}\right|=0
$$

modes k_{0} completely mixed
"purity gap" closes

- as long as the purity gap is finite, smoothly deform to a pure state

$$
\vec{n}_{k} \rightarrow \hat{\vec{n}}_{k} \quad \text { for } \quad\left|\vec{n}_{k}\right|>0 \quad \text { finite purity gap }
$$

- in this case, topological invariant well defined
\Rightarrow two gaps required for topological stability: damping and purity gap

Nature of the Dissipative Topological Phase Transition

- phase diagram

damping spectrum

\Rightarrow topological phase transition by purity gap closing (non-critical)

Microscopic Model

- combine critical Lindblad operators with momentum selective pumping

SD, E. Rico, M. Baranov, P. Zoller, Nat. Phys. (2011); C. Bardyn et al. NJP (2013)

$$
\begin{gathered}
\ell_{i}^{C}=C_{i}^{C \dagger} A_{i}^{C} \\
C_{i}^{C \dagger}=\sum_{j} v_{j-i}^{C} \psi_{j}^{\dagger}, \quad A_{i}^{C}=\sum_{j} u_{j-i}^{C} \psi_{j}
\end{gathered}
$$

quasi-local near critical p-wave operators

A. Griessner et al., NJP (2007)

$$
\begin{gathered}
\tilde{\ell}_{k}^{A}=\sum_{q} \tilde{C}_{q-k}^{A \dagger} \tilde{A}_{q}^{A} \\
\tilde{C}_{k}^{A \dagger}=g_{v} \sum_{i} \mathrm{e}^{\left.\left(k-\pi_{i}\right)^{2}\right)} d_{v}^{2} a_{k}^{\dagger} \quad \tilde{A}_{k}^{A}=g_{u} \sum_{i} \alpha^{\left.-k^{2}\right)} t_{u}^{2} a_{k}
\end{gathered}
$$

de-populating the low momentum modes

\Rightarrow full qualitative agreement with general analysis of quadratic master equation

Summary: Topology by Dissipation

Tailored dissipation opens new perspectives for many-body physics with cold atom systems

- Targeting cooling of conventionally and topologically ordered quantum states

- 1D dissipative Kitaev chain: parallels Hamiltonian case

- 2D dissipative Chern insulator/superfluid: Harness intrinsic open system properties:
- Competition of Topology and Locality in 2D
- Critical Chern states require fine tuning
- Stabilization of critical point into extended phase via hole plugging mechanism

